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ABSTRACT
We report measurements of the vapour–liquid coexistence densities and surface tension of fully flex-
ible Lennard–Jones chain molecules ranging in length from 4 to 60 beads. We demonstrate that the
surface tension for all chain lengths collapses to a singlemaster curve when plotted according to the
universal parachor correlation.We find a universal parachor exponent 3.79± 0.05 for conditions close
to the critical point, with a deviation observed for the longest chains far below the critical point.

1. Introduction

The surface tension of high-molecular-weight polymers
is a key material property for technological processes
such as enhanced oil recovery [1] and the production
of organic electronics [2]. Unfortunately, it is challeng-
ing to measure the surface tension of chain molecules
over large ranges of temperature and molecular weight
due to increased melt viscosity at higher molecular
weights, thermal instabilities and sample polydispersity
[3]. For example, reliable experimental surface tension
data for the homologous series of n-alkanes only exists
for low molecular weights (up to approximately C20H42)
[4,5] and for commercial polyethylenes [6]. Recently,
square gradient theory has been successfully applied to
predict the surface tension of the n-alkane series and
other small-molecule industrial fluids [7]. In cases where
theoretical predictions are difficult to obtain, reasonable
estimates of the surface tension can instead bemade from
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correlations based on measurable thermodynamic prop-
erties. It remains an important challenge to validate gen-
eral correlations for the surface tension of long chain
molecules.

The parachor correlation, introduced empirically by
Macleod [8] and extended by Sugden [9], relates the sur-
face tension γ to the coexistence densities:

γ =
(
P�ρ

M

)p

,

where P is the material-specific parachor, �ρ = ρL −
ρV is the difference in liquid and vapour densities, M
is the molecular weight and p is the universal parachor
exponent, originally proposed to be equal to 4. Guggen-
heim [10] applied the principle of corresponding states
and found that p = 11/3. Considerations of universal
critical phenomena for γ and �ρ suggest that p = 3.87
near the critical point [11]. In practice, fitted values for p
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generally range from 3.5 to slightly larger than 4.
Although useful as an engineering correlation, the para-
chor approach has limited transferability for different
materials due to the need to determine or estimate P.

More recently, the ‘universal parachor’ approach
[12,13], which combines the parachor with the principle
of corresponding states, has been proposed to correlate
surface tension with the coexistence densities and critical
properties. The reduced surface tension,

γ ∗ = γ

kBTc(ρc/M)2/3
,

appears to be a universal function of�ρ/ρc formolecules
of various geometries excluding those that exhibit hydro-
gen bonding, such as water [13]. Here, kB is Boltzmann’s
constant, Tc is the critical temperature and ρc is the crit-
ical density. In particular, a power-law relation

γ ∗ ∼ (�ρ/ρc)
p, (1)

with an exponent p= 3.55 has been shown to describe the
data well [12,13]. Molecular simulations have been used
to validate the universal parachor relation for a variety
of model oligomers, such as the fully flexible Lennard–
Jones chain [14], up to 16 beads in length [15]. It remains
untested whether the universal parachor relation applies
to longer chain molecules.

Despite recent renewed interest in the interfacial prop-
erties of Lennard–Jones chains [16–20], only sparse data
exists for chains longer than 16 beads [14,21,22]. In this
article, we report measurements of the vapour–liquid
coexistence densities and surface tensions of fully flex-
ible Lennard–Jones chains ranging in length from 4
to 60 beads. We collapse the data according to Equa-
tion (1), and demonstrate that a universal behaviour is
also observed for long polymer-like chains. The power-
law scaling of the universal curve appears to be consistent
with the theory of critical phenomena near the critical
point, with a small deviation observed for longer chains
at lower temperatures.

2. Computational methods

The model studied consists of fully flexible linear chains
comprising M bonded beads. Non-bonded beads inter-
acted through the Lennard-Jones potential,

ULJ(r) = 4ε
[(σ

r

)12
−

(σ

r

)6
]

,

where r is the distance between two beads, ε is the energy
well depth and σ sets the interaction range. For compu-
tational efficiency, the pair force computed from the gra-
dient of ULJ was truncated to zero at a cut-off distance

rc = 6 σ so that non-bonded forces acted only between
pairs of particles with r < rc. This cut-off distance has
been shown to be sufficiently large to yield accurate coex-
istence densities for the simple Lennard–Jones fluid [23]
and Lennard–Jones chain dimers [24]. Bonded beads
interacted through a harmonic potential:

UB(r) = k
2
(r − σ )2.

A stiff spring constant k = 75, 000 ε/σ 2 was employed
in order to facilitate comparison of data with previous
Monte Carlo simulations [17,18], where bond lengths are
typically constrained to be exactly σ . The chosen value
of k corresponds approximately to the value suggested for
substituting harmonic bonds for constrained bonds in the
TraPPE force field [25–28]. Molecular dynamics simula-
tions were performed with the HOOMD-blue simulation
package on general-purpose graphics processing units
[29]. The equations of motion were integrated using the
velocity-Verlet algorithm with time step 0.001 τ , where
τ = √

mσ 2/ε is the derived unit of time andm is themass
of a bead. Isothermal conditions were maintained using a
weakly coupled Langevin thermostat with friction factor
0.1m/τ [30].

Chains of a given length ranging fromM= 4 toM= 60
were initially placed randomly in a periodic cubic simula-
tion box of edge length Lx = Ly = Lz = 60 σ . We kept the
total number of monomers roughly constant at 18, 750,
and the number of chains varied from 4687 (M = 4) to
312 (M = 60). The simulation box was compressed at a
constant rate for 5000 τ to an edge length Lx = Ly = Lz
= 30 σ , which gave a final density ρ ≈ 0.7m/σ 3. Dur-
ing compression, the temperature was held constant at
T = 4.0 ε/kB, which is above the critical temperature for
all chain lengths studied.

The simulation box was then expanded along the
z-axis by a factor of 4 (Lz = 120 σ ) to yield a slab
surrounded by vacuum. The fluid was quenched to a
temperature below the critical point, and vapour–liquid
equilibriumwas established over a period of 15, 000 τ . For
all chain lengths and temperatures, we observed that the
liquid slab expanded to nomore than roughly Lz/2, which
we found to be sufficient to establish a bulk vapour phase.
A representative snapshot of the final equilibrated state is
shown in Figure 1 forM= 20 atT= 2.7 ε/kB. Production-
quality simulation data were collected over 10, 000 τ

for five independent trajectories generated from statis-
tically independent starting configurations and unique
seeds to the Langevin thermostat pseudo-random num-
ber generator [31]. Statistical uncertainties were esti-
mated based on the variance of quantities between the
trajectories.
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Figure . Visualisation [] of vapour–liquid coexistence ofM= 
chains at T= . ε/kB.
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Figure . Density profiles ρ(z) for chain lengthM =  from tem-
perature T= . ε/kB (top) to T= . ε/kB (bottom).

Density profiles were computed along z from snap-
shots taken every 200 τ by dividing the simulation box
into 240 bins of width 0.5 σ . Profiles were adjusted to
remain centred at z = 0 to remove small drift of the liq-
uid slab over long times and were subsequently averaged
over the trajectories. A representative set of density pro-
files is shown in Figure 2 for chain length M = 60. The
coexistence densities were computed by averaging the

density in the bulk regions sufficiently far from the
vapour–liquid interfaces.

The surface tension was calculated using the standard
mechanical definition [33],

γ = Lz
2

〈
Pzz − Pxx + Pyy

2

〉
,

where Pxx, Pyy and Pzz are the diagonal components of
the pressure tensor along the x-, y- and z-axes, respec-
tively, and the brackets denote an ensemble average. The
factor of 1/2 accounts for the presence of two interfaces
within the simulation box. Values of the pressure tensor
were collected every 0.05 τ and averaged over the trajec-
tories. The surface tension was corrected for truncation
of the Lennard–Jones potential using the scheme pro-
posed by Chapela et al. [34], which has been shown to
be reliable for the chosen rc [35]. Following this scheme,
the average density profile was fit to a hyperbolic tangent
form:

ρ(z) = ρL + ρV

2
− �ρ

2
tanh

(
z − z0
d

)
,

where z0 is the position of the interface and d sets the
interfacial thickness. (We note that the coexistence den-
sities obtained by this fitting procedure are in complete
agreement with the values obtained by averaging in the
bulk.) The fitted values for d are reported in Tables 1–3.
For a given chain length, d increases with temperature,
as expected from Figure 2. The surface tension was cor-
rected by �γ [34], where

�γ = 12π(�ρ)2
∫ 1

0
ds

∫ ∞

rc
dr (r−3 − 2r−9)

× (3s3 − s) coth
( sr
d

)
.

3. Results and discussion

3.1. Coexistence properties

The computed vapour–liquid phase diagrams, plot-
ted in Figure 3 and tabulated in Tables 1–3, show
behaviour characteristic of long chain molecules. The
phase envelopes become wider and taller with respect
to density and temperature, respectively, and skew to
lower densities as chain length increases. The coexistence
densities are in generally good agreement with values
reported in the literature for a comparable cut-off radius
[20] or with inhomogeneous long-ranged corrections to
the Lennard–Jones potential [18]. In particular, we found
agreement of the liquid density for M = 8 within 2%
up to T = 2.2 ε/kB, with a 7% smaller liquid density at
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Table . Coexistence densities, interfacial thicknesses and sur-
face tensions for -, -, - and -bead chains. Subscript indicates
uncertainty in the last reported digit.

T (ε/kB) ρL (m/σ
) ρV (m/σ

) d (σ ) γ (ε/σ )

M=  ( chains)
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .

M=  ( chains)
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .

M=  ( chains)
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .

M=  ( chains)
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .

T = 2.5 ε/kB. Given that substitution of harmonic bonds
with k = 3000 ϵ/σ 2 for rigid bonds in [20] had only a
negligible effect on the coexistence densities compared
to [18] and that all works give very good agreement at
temperatures far below the critical point, we attribute this
discrepancy to finite-size scaling effects near the critical
point [36]. The simulation box in this work has a cross-
sectional edge length (Lx = Ly = 30 σ ) roughly three
times larger than in [18,20] (Lx = Ly = 11 σ ), and so the
values reported here should more accurately reflect the
infinite-size limit.

Critical points were estimated by extrapolation using
the law of rectilinear diameters:

ρL + ρV

2
= ρc + A(Tc − T ),

Table . Coexistence densities, interfacial thicknesses and sur-
face tensions for -, - and -bead chains. Subscript indicates
uncertainty in the last reported digit.

T (ε/kB) ρL (m/σ
) ρV (m/σ

) d (σ ) γ (ε/σ )

M=  ( chains)
. . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .

M=  ( chains)
. . . .
. . . .
. . . .
. . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .

M=  ( chains)
. . . .
. . . .
. . . .
. . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
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Figure . Vapour–liquid coexistence densities for chain lengths
from M =  to M = . Solid lines show the extrapolation to the
critical point for the top six data points, and are a guide to the eye
otherwise. Statistical uncertainty is smaller than symbol size.
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Table . Coexistence densities, interfacial thicknesses, and sur-
face tensions for - and -bead chains. Subscript indicates
uncertainty in the last reported digit.

T (ε/kB) ρL (m/σ
) ρV (m/σ

) d (σ ) γ (ε/σ )

M=  ( chains)
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . . .
. . . . .
. . . . .
. . . . .

M=  ( chains)
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . . .
. . . . .
. . . . .
. . . . .

in conjunction with the universal scaling of the coexis-
tence densities near the critical point

�ρ = �ρ0(1 − T/Tc)β, (2)

whereA and�ρ0 arematerial-specific fitting parameters.
We assume β � 0.325 based on the three-dimensional
Isingmodel universality class [37]. The extrapolation was
performed using data from the six highest temperatures
for each chain length because Equation (2) is only valid
asymptotically close to the critical point. Using fewer
points did not significantly change the estimate of the crit-
ical point (less than 1%). Statistical uncertainty for the
critical pointswas estimated synthetically from the uncer-
tainties in the coexistence densities. The reported uncer-
tainties do not account for systematic errors inherent to
themethod of estimation. The extrapolated critical points
are reported in Figure 3 and Table 4.

Table . Tabulated critical points. Subscript indi-
cates uncertainty in the last reported digit.

M Tc (ε/kB) ρc (m/σ
)

 . .
 . .
 . .
 . .
 . .
 . .
 . .
 . .
 . .
� . 

Qualitatively, the critical temperature increases to
approach an asymptotic value with increasing molecu-
lar weight, while the critical density decreases towards
zero. We extrapolated the critical temperature to infi-
nite molecular weight, T∞

c , according to the Shultz–Flory
relationship [38]:

1/Tc − 1/T∞
c ∼ 1/

√
M + 1/2M,

and determined T∞
c ≈ 4.34 ε/kB. The Shultz–Flory plot

linearised the data remarkably well over the entire range
of M investigated. We found that ρc decays to zero as
a power law, ρc ∼ M−0.20, for all but the shortest chain
length. This scaling is consistent with that observed by
Sheng et al. for a similar Lennard–Jones chain polymer
model [21], but more slowly decaying than the Flory–
Huggins prediction, ρc ∼ 1/

√
M.

In principle, the coexistence pressure can also be mea-
sured from 〈Pzz〉. This pressure is small for most tem-
peratures considered due to the low density of chains
in the vapour phase, and the relative uncertainty of the
measurement is large. Accordingly, we have chosen not
to report the directly measured coexistence pressure.
Instead, the coexistence pressure can be conveniently esti-
mated from the ideal gas law, P � (ρV/Mm)kBT, in this
low-density limit.

3.2. Surface tension

The surface tension is shown as a function of temperature
for different chain length in Figure 4 and in Tables 1–3.
As expected, the surface tension decreases with temper-
ature for a fixed chain length, and increases with chain
length for a fixed temperature. The surface tension should
decrease to zero as temperature approaches the critical
point according to

γ = γ0(1 − T/Tc)μ, (3)
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Figure . Surface tension for chain lengths fromM=  toM= .
Simulation data are given by points, while fits to eq. () are shown
by lines. Fits are obtained using T� . Tc.

where γ 0 is a material-specific fitting parameter, and we
have assumed μ � 1.26 based on Widom’s hyperscaling
relationship for the three-dimensional Ising model uni-
versality class [37,39]. As with Equation (2), Equation (3)
is strictly only valid near the critical point. We fit the sur-
face tension to Equation (3) forT� 0.6Tc, and the result-
ing curves are shown in Figure 4. Equation (3) appears to
fit the data well across all temperatures for M � 40. We
observed a deviation from Equation (3) for the 50- and
60-bead chains at temperatures below 0.6Tc.

We reduced the surface tension according to eq. (1),
shown in Figure 5. The data appear to collapse onto a uni-
versal curve for all chain lengths and temperatures mea-
sured. Our data extend the range of �ρ/ρc by a factor of
two compared to what has previously been investigated
[15]. We attempted to fit the collapsed data to eq. (1) in
order to extract a value for p, but found that the data
was not well-described by a single exponent for all�ρ/ρc
measured. We performed a nonlinear least-squares fit of

0.1

1.0

10

1 2 3 4 5 6

3.79γ  
*

Δρ /ρc

M = 4
M = 6
M = 8
M = 10
M = 20

M = 30
M = 40
M = 50
M = 60

Figure . Reduced surface tension as a function of reduced den-
sity difference for chain lengths fromM =  toM = . The fitted
power-law exponent is .± ..
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Δρ
 / Δ

ρ 0
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0.0 0.1 0.2 0.3 0.4 0.5 0.6

γ /
γ 0

1 − T / Tc
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Figure . Reduced coexistence density difference �ρ/�ρ (top)
and reduced surface tension γ /γ  (bottom) as a function of
reduced temperature. Vertical line indicates estimated point of
deviation from critical scaling laws forM=  andM=  chains.
Statistical uncertainty due to sampling is smaller than symbol size
for�ρ/�ρ.

the data, weighted by the sampling uncertainty, for�ρ/ρc
< 3 and found p= 3.79± 0.05. This fitted value for pdevi-
ates slightly from the value of 3.55 reported by Galliero
forMie n-6 fluids over a comparable range of�ρ/ρc [12];
this 6% discrepancy may simply be due to the method of
fitting or uncertainty in the measurements.

Close to the critical point, eqs. (2) and (3) require that
p = 3.87. The fitted value of p is reasonably consistent
with this prediction (2% error). We plotted �ρ/�ρ0 and
γ /γ 0 against the reduced temperature in Figure 6. Such a
plot should yield a universal curve in the regimes where
eqs. (2) and (3) are valid. We confirmed that �ρ and γ

show universal scaling near the critical point, with the
first deviation observed for �ρ at roughly T � 0.7Tc. To
ensure we fitted to data close the critical point, we refit for
T� 0.8Tc, and found p= 3.83± 0.07. This would suggest
that p = 3.87 can be obtained asymptotically close to the
critical point, but in practice a lower effective exponent is
observed because (1) measurement temperatures are far-
ther from the critical point, and (2) the fitted exponent is
sensitive to uncertainty in the collapsed data.

The reduced surface tension appears to deviate most
significantly from the power-law fit for the 50- and 60-
bead chains when �ρ/ρc > 4. These points correspond
to T < 0.7Tc for the 50- and 60-bead chains, which is
consistent with Figure 6. We refit the data in this region
to Equation (1) found p = 3.13 ± 0.05. The reason for
this change in exponent is not obvious. One might spec-
ulate that there is a possible cross-over to the mean field
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theory prediction p = 3 [37] for conditions far from the
critical point, but there are insufficient measurements in
this range of �ρ/ρc to assess this. Given that the rele-
vant processing temperatures for many high-molecular-
weight polymers is far below the critical temperature, this
deviation warrants further investigation.

4. Conclusions

We determined the vapour–liquid coexistence densities
and surface tension of fully flexible Lennard–Jones chains
up to 60 beads in length using molecular dynamics sim-
ulations. We showed that the universal parachor cor-
relation reduces the data to a single master curve for
all chain lengths. We fit a universal parachor exponent
p = 3.79 ± 0.05 for conditions close to the critical point,
which is reasonably consistent with the predictions of
the theory of universal critical phenomena. A smaller
parachor exponent was observed for longer chains far
from the critical point. In order to assess the signifi-
cance of this deviation, data are needed for longer chains
at temperatures far below the critical point in order to
extend the range of �ρ/ρc measured. However, simu-
lating over the polymer relaxation times necessary to
establish vapour–liquid equilibrium and reliably measure
the surface tension present a considerable computational
challenge. These measurements are left as a possible sub-
ject for future work.
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