Additive Growth and Crystallization of Polymer Films

Hyuncheol Jeong,† Kimberly B. Shepard,† Geoffrey E. Purdum,† Yunlong Guo,†,‡ Yueh-Lin Loo,†,‡ Craig B. Arnold,†,‡ and Rodney D. Priestley†,§,§

†Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 United States
‡Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544 United States
§Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 United States

ABSTRACT: We demonstrated a polymeric thin film fabrication process in which molecular-scale crystallization proceeds with additive film growth, by employing an innovative vapor-assisted deposition process termed matrix-assisted pulsed laser evaporation (MAPLE). In comparison to solution-casting commonly adopted for the deposition of polymer thin films, this physical vapor deposition (PVD) methodology can prolong the time scale of film formation and allow for the manipulation of temperature during deposition. For the deposition of molecular and atomic systems, such a PVD manner has been demonstrated to facilitate molecular ordering and delicately manipulate crystalline morphology during film growth. Here, using MAPLE, we deposited thin films of a model polymer, poly(ethylene oxide) (PEO), atop a temperature-controlled substrate with an average growth rate of less than 10 nm/h. The mechanism of deposition is sequential addition of nanoscale liquid droplets. We discovered that the deposition process leads to the formation of two-dimensional (2D) PEO crystals, composed of monolamellar crystals laterally grown from larger nucleus droplets. The 2D crystalline coverage and crystal thickness of the films can be manipulated with two processing parameters, deposition time, and temperature.

INTRODUCTION

Semicrystalline polymer thin films have been extensively investigated as an enabling material for many technologies, including advanced barrier coatings,1 pressure/imaging sensors,2,3 electronic memories,4,5 and energy devices.6,7 In all applications, control of the crystalline morphology is of paramount importance due to the observed correlations between structure and performance.1,4,6,7 Typically, polymer thin films are prepared by casting from solution. However, while deposition is facile and economically appealing, the short processing time combined with rapid vitrification limits morphological development of the crystalline domains in polymer thin films.5–7 To circumvent this issue, efforts to control and improve crystalline morphology in polymer thin films, e.g., active layers in organic electronics, have aimed to prolong the time scale of vitrification or enhance molecular mobility during or subsequent to film deposition.6–9,11–12 The success of these strategies suggests that it would be beneficial to have a processing route in which slow film growth and crystallization can occur simultaneously.

Recently, there has been a considerable effort to exploit the unique advantages of matrix-assisted pulsed laser evaporation (MAPLE) for the growth of polymer thin films.13–18 In the MAPLE process, a pulsed laser ablates a target consisting of a frozen dilute solution of the desired polymer. The frozen matrix solution serves as a sacrificial matrix to transport the polymer into the gas phase. Contrary to direct laser ablation, MAPLE provides a gentle and nondestructive means for polymer film deposition.14 Control of various process parameters has been shown to tune film morphology. For instance, MAPLE has been shown to control preferential crystal orientation and the extent of crystallinity in thin polymer films by adjusting the matrix formulation15 and substrate temperature,18 respectively.

Conceptually, the film growth in MAPLE proceeds by the additive deposition of nanometer-sized droplets comprising the target polymer.19,20 With tunable laser pulse rates and target polymer concentration, the average film growth rates throughout the substrate can be controlled to <1 nm/s, thus enabling the slow growth of polymer films in a manner recently advocated for organic electronics.19 There are some experimental and simulation reports that investigated the nature of ablation process in MAPLE22–23 and the size distribution of polymer droplets as a function of process parameters.1,24 How the mechanism of MAPLE, i.e., the deposition of nanoscale polymer droplets, influences the morphology of semicrystalline polymer films has not been investigated. We note that this

Received: December 10, 2015
Revised: March 8, 2016

DOI: 10.1021/acs.macromol.5b02675
Macromolecules XXXX, XXX, XXX−XXX
effect could be significant, as nanoscale confinement strongly influences polymer crystallization. To achieve such a study requires ultraslow MAPLE deposition to allow for the capture of the early stages of film growth and crystalline morphology.

Here, we employ atomic force microscopy (AFM) to investigate the early stages of film growth and crystallization of a semicrystalline polymer film deposited by MAPLE at slow growth rates. The study is undertaken using poly(ethylene oxide) (PEO), a model polymer, in which crystallization in thin-film geometry has been thoroughly investigated. The average film growth rate was extremely slow, ∼6 nm/h, to promote the simultaneous occurrence of film formation and crystallization. We investigated the influence of growth time and deposition temperature on the crystalline film morphology of PEO deposited atop as-received silicon wafers (AR-Si). We found that the film morphology strongly depends on these process parameters. We anticipate that our findings will inform the future use of MAPLE as a processing tool to deposit thin films of semicrystalline polymers in which control of the morphology is desired.

RESULTS AND DISCUSSION

First, to investigate the nature of the PEO film growth during processing, we deposited PEO atop n-octadecyltrichlorosilane-coated silicon wafers (OTS-Si) with low surface energy (15.2 mJ/m²). We found that the deposition of PEO atop hydrophobic surfaces leads to the formation of individual nonwetting droplets; we have thus been able to quantify their size distribution. Deposition of PEO at 25 °C results in the formation of droplets with radii ranging from ∼10 nm to ∼50 nm as shown via optical microscopy and AFM in Figure 1a. Figure 1b is a histogram plot of the droplet size distribution for 2 h of deposition (t_{dep} = 2 h) with an average growth rate of ∼6 nm/h. The distribution shows that the dominant droplet size is ∼40 nm and that the number density of droplets rapidly decreases with radii >55 nm. Irrespective of droplet size, the height-to-radius ratio (h/R) remained constant at ∼0.5 as shown in Figure 1c, providing evidence that the deposited PEO is mobile on the substrate surface despite the fact that the substrate temperature is held significantly below the bulk crystallization point of 42.5 °C (see DSC measurements in Methods for details).

Under identical deposition conditions, i.e., the same growth rate and T_{sub}, we next deposited PEO onto AR-Si substrates. Figure 2a shows a film with t_{dep} = 1 h atop AR-Si, in which a primary nucleus droplet is surrounded by numerous smaller liquid droplets. All primary nucleus droplets exhibited a ∼10 nm-thick platelet-like base (see Figure 2a inset) which we refer to as the monolamellar crystal (MLC). The AFM amplitude
error image of a primary nucleus droplet (Figure 2b) reveals a spiral-growth morphology. Furthermore, the conformation of liquid droplets atop AR-Si differed from those atop OTS-Si. The liquid droplets observed in Figure 2a were 2–4 nm in height irrespective of their lateral size. This height is comparable to the R_g of PEO with $M_n = 4600$ g/mol, suggesting that the liquid droplets on AR-Si were composed of a monolayer of PEO due to attractive interactions with the substrate.34

When increasing t_{dep} to 2 h, the primary nuclei developed more pronounced fingerlike crystal patterns as shown in the Figure 2c. Grown from the base of the primary nuclei, the fingerlike MLCs exhibited a thickness of ~10 nm. The liquid regions surrounding the crystalline islands also transformed from an ensemble of discrete droplets to a continuous film, thus forming a monolayer-thick (2.7 ± 0.4 nm) liquid layer. Figure 2d shows the AFM phase image of region R1 in Figure 2c. The spiral morphology of the primary nucleus, the finger-like MLCs, as well as the liquid monolayer are all clearly depicted. In addition, liquid droplets were observed on the surface of the MLCs.

The unique film morphology on AR-Si is a consequence of the deposition mechanism, that is, the additive assembly of a size-distribution of liquid nanodroplets. Smaller droplets are unable to crystallize by themselves due to low nucleation probability;26 instead, they adsorb to the substrate to form a liquid layer. In contrast, larger droplets undergo crystallization when deposit onto low-temperature substrates, which we denote as primary nucleation. Henceforth, crystal growth of the fingerlike primary MLCs proceeds from the primary nuclei along the substrate, facilitated by the presence of the nearby liquid layer. Unlike crystallization of spin-cast films, in which molecular ordering is achieved during rapid solidification of the entire film, here molecular ordering is achieved within nanoconfined regions over the long time scales of film growth. The fingerlike morphology is due to the limited diffusion of PEO to the crystal growth front at large undercoolings, as predicted by the diffusion-limited aggregation (DLA) model.27,35

Film growth in which molecular-scale crystallization occurs prior to the deposition of more material provides a unique means to tune crystal nucleation and growth, hence giving the resulting morphology, as previously demonstrated for metallic or molecular films.56,57 To investigate the relationship between t_{dep} and the extent of crystalline surface coverage, we conducted two sequential MAPLE depositions with 2 h intervals on the same AR-Si substrate at 25 °C with an intervening thermal annealing step at 35 °C for 3 h after the first 2 h deposition interval. The film morphology is illustrated in Figure 3a. Thickening of crystal boundaries occurs during thermal annealing,36,37 and therefore, can serve as a marker in distinguishing crystals formed in the first from the second MAPLE deposition. Among the four crystalline islands, denoted N1–N4 in Figure 3a, only N1 was deposited in the
The increasing thickness of the primary MLCs at the growth front with increasing deposition time was investigated. Figure 3d illustrates the film morphology with a 2 h deposition interval, in which the crystalline domains were hindered after \(t_{\text{dep}} \sim 4 \) h. To understand this, we investigated the evolution of the thickness profile of the primary MLCs (see Methods for details), as a function of \(t_{\text{dep}} \), from 2 to 12 h (Figure 3d). Remarkably, the primary MLCs in the samples with \(t_{\text{dep}} = 6 \) and 12 h were submerged in a liquid layer of thickness \(\sim 8 \) and \(\sim 15 \) nm each, as depicted in the schematic in Figure 3d. This indicates that the liquid layer acted more as a hindrance than a source for further crystal growth. The increasing thickness of the primary MLCs at the growth front with increasing \(t_{\text{dep}} \) can be explained by the continuous coverage of a liquid PEO overlayer during deposition. This addition of the PEO atop the MLC can serve as the source of secondary crystallization, nucleated by the crystalline face, along the periphery of the MLC. Evidence of secondary crystallization is shown in Figure 3, parts e and f.

The hindrance of crystallization after \(t_{\text{dep}} > \sim 4 \) h can be explained by suggesting that the mobility of the liquid layer decreases with increasing thickness. To test this assumption and enhance the extent of the crystalline surface coverage, we employed two different temperature protocols. In the first method, MAPLE was performed for 2 h at 25 °C. Subsequently, the sample was heated \(\text{in situ} \) to 50 °C and MAPLE proceeded for an additional 4 h at the same growth rate followed by a cooling step to room temperature. Two types of morphologies were observed. Figure 4a illustrates the first type of morphology. Clearly, in comparison to Figure 3c (same \(t_{\text{dep}} \) and growth rate), the crystalline morphology is more compact and the extent of crystalline surface coverage is significantly greater. Here, most of the trenches between the islands were filled. The islands are composed of \(\sim 25 \) nm-thick MLCs and surrounding \(\sim 10 \) nm-thick dendrites. Figure 4b illustrates the second type of morphology. Again, in comparison to deposition at 25 °C, the extent of crystalline coverage has dramatically increased as revealed by AFM analysis and corroborated by the X-ray diffraction data shown in Figure S1 (Supporting Information). However, contrary to the first type, the second type of crystalline islands consists of uniform \(\sim 10 \) nm-thick MLC fingers.

The morphological difference in Figure 4, parts a and b, is due to the deposition interval in which primary nucleation occurred. In Figure 4a, primary nucleation occurred in the first 2 h of deposition at 25 °C. During the following 4 h of deposition, the increased substrate temperature would facilitate the polymer chain dynamics in the liquid layer to enable the continuation of crystal growth, resulting in more compact structures of the islands. Crystal growth in the trenches of islands like region R4 in Figure 4a is diffusion-limited (DL) due to the high density of surface nucleation sites. On the contrary, crystal growth at the outermost growth fronts like R5 in Figure 4a is nucleation-limited (NL), resulting in the formation of thinner dendrites during the cooling interval.

In Figure 4b, primary nucleation occurred after MAPLE during the cooling interval, a result due to the dramatically reduced probability of primary nucleation at the increased substrate temperature. Under these conditions, prior to cooling, a liquid PEO layer of \(\sim 3 \) nm thickness is produced. Upon cooling, crystallization would proceed from larger liquid droplets. The inset in Figure 4b, a magnification of R6, shows the crystal growth from a primary nucleus. On the basis of the thickness of the MLC, we estimate that crystallization occurred at \(\sim 25 \) °C.

To confirm the inhibition of primary nucleation at 50 °C, we performed MAPLE deposition for 2 h at 50 °C followed by cooling to room temperature; thus, eliminating the possibility of primary nucleation from liquid PEO layer during the deposition. With the exception of a small portion of crystalline islands, which are assumed to be grown from deposited
heterogeneous nuclei, the major crystalline morphology in the film consisted of uniform ∼10 nm-thick MLC dendrites as illustrated in Figure 4c. The results illustrate that by simply adjusting the deposition temperature it is possible to control when nucleation occurs, and hence, the morphology in a manner not previously demonstrated for polymers.

Lastly, to check the chemical identity and crystalline structure of MAPLE-deposited PEO films, we performed Fourier transform infrared spectroscopy (FTIR) and grazing-incidence X-ray diffraction (GIXD) on these films. Figure 5a compares the FTIR spectra of MAPLE-deposited films (black line) with the starting materials, a raw PEO (red) and a DMSO solvent (blue). In the spectra of the MAPLE-deposited film the characteristic DMSO peaks are not noticeable, indicating that the film is free of DMSO. In comparison of raw and MAPLE-deposited PEO, we identified the same strong stretches in the spectra of both films, i.e., the primary alcohols (peak P6 in Figure 5a), aliphatic ethers (P5), and saturated methylene groups (P1–P4, P7),38,39 with the exception of a slight feature at ∼1200 cm⁻¹. Next, to probe the crystalline structure of PEO films deposited via MAPLE at 25 °C for 6 h, we employed GIXD; the two-dimensional GIXD pattern is shown in Figure 5b. The pattern reveals two strong reflections, located at q = 1.36 and 1.66 Å⁻¹, corresponding to the (120) reflection and the overlapping reflections of the (112), (032), (132), and (212) planes of the monoclinic PEO crystal structure, respectively.40,41 Figure 5c plots the scattering intensity as a function of scattering vector (q), where the crystalline peaks of the usual monoclinic form of PEO are clearly depicted. Figure 5d shows the azimuthal distribution of the (120) reflection; that the intensity is strongly centered at 90° suggests that PEO lamellae adopt a preferential flat-on lamellar orientation in which the c-axis of monoclinic PEO is normal to the substrate.40,41 While the azimuthal distributions suggest that the films are preferentially oriented, we do see isotropic scattering along q = 1.36 and 1.66 Å⁻¹; this can be attributed to the large primary nuclei centered at each of crystalline islands and the nonpreferentially oriented secondary crystals that grow atop the dendritic arms at long growth times (see Figure 3e). These results are in agreement with the crystalline morphology observed using AFM. The FTIR and GIXD results confirm that the target PEO was nondestructively deposited onto the substrate, free of matrix solvent, and crystallized into the usual monoclinic form of PEO.

CONCLUSIONS

We have investigated the early stage morphology of crystalline polymer films evaporatively deposited via MAPLE. The formation of 2-dimensional dendritic crystals was rendered by the deposition of a size-distribution of polymer nanodroplets, among which only larger droplets can undergo primary nucleation at the deposited location, while other smaller droplets form dendritic monolamellar crystals or a liquid layer. We showed that crystalline coverage and crystal thickness of the films can be manipulated with two processing parameters, deposition time or substrate temperature, which is unique to
MAPLE. We anticipate that the approach will enable dominant chain orientation when molecular-scale deposition is performed on the appropriate substrate.30–32 Furthermore, the ability to exploit MAPLE for codeposition as well as multilayer film deposition will open the possibility to engineer structures in thin film polymeric-based devices in ways that are difficult by other means.

METHODS

Materials. Poly(ethylene oxide) (PEO) with number-averaged molecular weight of 4600 g/mol and polydispersity of 1.1 was obtained from Aldrich Company. Differential scanning calorimetry (DSC) was conducted with a TA Q-2000 to investigate the melting and crystallization temperature of raw PEO in bulk (see DSC Measurements in **Methods**). Dimethyl sulfoxide (DMSO) (ACS reagent, ≥ 99.9%) was obtained from Sigma-Aldrich Company and used as the matrix solvent. Silicon wafers (p-type, (100)) freshly purchased from UniversityWafer Inc. were used as as-received substrates (AR-Si) after being blown with nitrogen gas. For the preparation of n-octadecyltrichlorosilane-coated substrates (OTS-Si), UV-ozone cleaned silicon wafers were immersed in an OTS/deionized water/trichloroethylene solution for 1 h. After the coating, the substrates were rinsed and sonicated in toluene to remove multicoated OTS layers, resulting in a monolayer of OTS on the silicon substrate. The surface energies of both substrates were calculated according to Owens and Wendt33 using the measured contact angles of deionized water and glycerol droplets on the substrates. The calculated surface energies for AR-Si and OTS-Si are 66.7 and 15.2 mJ/m², respectively.

MAPLE Deposition. For the preparation of MAPLE target solution, PEO was fully dissolved in DMSO at a concentration of 1 mg/mL with heating around 70 °C. The premade solution was preheated to 60–65 °C and loaded into an aluminum target cup; the cup was then rapidly cooled in a liquid nitrogen bath until the solution became completely frozen. The substrates (AR-Si or OTS-Si), which were attached to a custom-made electric heater, and the target cup were then installed inside the vacuum chamber at a distance of ~6 cm apart. The chamber was immediately pumped down by a turbo pump, and the KrF laser (LightMachinery PulseMaster 844, λ = 248 nm, pulse duration = 20 ns) was operated with a repetition rate of 5 Hz and a fluence of 0.09 mJ/cm² (15 mm² spot area) at the vacuum level of ~8 × 10⁻³ Torr. During the deposition the MAPLE target was continuously cooled by a circulating liquid-nitrogen-cooled nitrogen gas and the substrate temperature was monitored by a K-type thermocouple, being maintained within ±1 °C from the set point temperature.

Atomic Force Microscopy (AFM) and Optical Microscopy (OP). Two tapping-mode AFMs were used to investigate the morphology of MAPLE-deposited PEO film: a Veeco Dimension V Nanoman AFM and an Asylum Research MFP-3D-SA AFM. AFM image processing and analysis were performed using Gwyddion34 software. The thickness of MAPLE-deposited films on AR-Si substrates was measured by a razor blade method: the absolute height of the films was determined from the base level at the area scratched by a razor blade, whose height was set to zero. For optical microscopy imaging of as-deposited PEO droplets on OTS-Si substrates, Olympus OLS4000 laser microscope was used. ImageJ35 software was used to investigate the size distribution of the PEO droplets deposited on OTS-Si substrates, using both OP and AFM images. The average film growth rate with the used MAPLE conditions, ~6 nm/h, was derived by dividing the estimated total volume of PEO droplets on OTS-Si by the deposited area and time. On AR-Si this growth rate makes a monolayer-thick liquid PEO film for ~6 h.

Fourier Transform Infrared Spectroscopy (FTIR) Measurements. To compare the chemical identity of MAPLE-deposited films with the starting materials (frozen PEO/DMSO target), the FTIR absorption spectra of three samples prepared on KBr discs were investigated: a MAPLE-deposited film (black line in Figure 5a), a pure PEO film drop-cast from tetrahydrofuran (THF) solution (red line in Figure 5a), and a pure DMSO solvent (blue line in Figure 5a). The pure PEO was annealed at 80 °C in vacuum overnight prior to FTIR measurement to remove THF. The spectra were measured by a N2-purged Nicolet iS50 FTIR spectrometer. Water and CO₂ traces were removed from the raw data and a baseline correction was performed. The MAPLE film was prepared by ablating the frozen target onto the KBr disk for total 10 h.

GIXD Measurements. GIXD experiments were performed at the G1 station (9.95 ± 0.05 keV) of the Cornell High Energy Synchrotron Source. The beam slits were position such that the beam was 0.05 mm tall and 1 mm wide. The width of the samples was 5 mm. The X-ray beam was aligned above the film’s critical angle and below the substrate’s, at a 0.18 incident angle with the substrate. Scattered intensity was collected with a two-dimensional CCD detector, positioned 108.4 mm from the sample. All GIXD images have been background subtracted.

Differential Scanning Calorimetry (DSC) Measurements. Differential scanning calorimetry (DSC) of the target PEO (Mw = 4600 g/mol) was conducted with a TA Q-2000 to investigate the melting and crystallization temperature of raw PEO in bulk (data are not shown). Two melting peaks were observed at 56.3 and 60.0 °C, and a crystallization temperature at 42.5 °C. The DSC thermogram of 2~10 mg of PEO was measured after erasing thermal history at 80 °C for 20 min. The cooling and heating cycles were recorded with a rate of 2 °C/min in order.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.macromol.5b02675.

Figure S1, GIXD measurements (PDF)

AUTHOR INFORMATION

Corresponding Author
*R.(R.D.P.) E-mail: rpriestl@princeton.edu.

Present Address
*University of Michigan—Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240 P.R. China

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

R.D.P., Y.-L.L. and C.B.A. acknowledge support of the National Science Foundation (NSF) Materials Research Science and Engineering Center program through the Princeton Center for Complex Materials (DMR-0819860; DMR-1420541). Portions of this work were conducted at the Cornell High Energy Synchrotron Source (CHESS), which is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF Awards DMR-0936384 and DMR-1332208. H.J. acknowledges support from Kwanjeong Educational Foundation in South Korea, and G.E.P. acknowledges support from DoD, Air Force Office of Scientific Research, the National Defense Science and Engineering Graduate (NDSEG) Fellowship Program, 32 CFR 168a.

REFERENCES

