Seed 9

Synthesis of new topological materials

Principal Investigator
Leslie M. Schoop (Chemistry)

Seed start and end dates: September 1, 2017 - August 31, 2019

This seed will use chemical concepts to predict and synthesize new quantum materials. Research will focus on Dirac and Weyl materials as well as two dimensional magnetic material. With combining chemical concepts such as electron counting and bonding rules with ab initio calculations, this research will identify the best candidates that will then be grown in single crystalline form to investigate the physical properties. For these studies, this seed will work in close collaboration with other groups within the MRSEC.



  1. X. Song, G. Cheng, D. Weber, F. Pielnhofer, S. Lei, S. Klemenz, Y. W. Yeh, K. A. Filsinger, C. B. Arnold, N. Yao, L. M. Schoop, “Soft chemical synthesis of HxCrS2: an antiferromagnetic material with alternating amorphous and crystalline layers,” J. Am. Chem. Soc. 141, 39, 15634-15640, (2019). DOI:10.1021/jacs.9b07503
  2. S. Klemenz, S. Lei, and L. M. Schoop, “Topological Semimentals in Square-Net Materials,” Annual Reviews of Material Research, Vol 49:185-206, (2019). DOI: 0.1002/qute.201900045
  3. L. Muechler, Z. Guguchai, J-C. Orain, J. Nuss, L.M. Schoop, R. Thomale, F.O. vonRohr, “Superconducting order parameter of the nodal-line semimetal NaAISi,” APL Mater, 7, 121103 (2019)
  4. S. M. L. Teicher, L. K. Lamontagne, L. M. Schoop, R. Seshadri, “Fermi-level Dirac crossings in 4and 5d cubic metal oxides: NaPd3O4 and NaPt3O4,” Phys. Rev. B 99, 195148, (2019). DOI: 10.1103/PhysRevB.99.195148
  5. J. F. Khoury, A. J. E. Rettie, M. A. Khan, M. J. Ghimire, I. Robredo, J. E. Pfluger, K. Pal, C. Wolverton, A. Bergara, J. S. Jiang, L. M. Schoop, M. G. Vergniory, J. F. Mitchell, D. Y. Chung, and M. G. Kanatzidis, “A new three-dimensional subsulfide Ir2In8S with Dirac semimetal behavior,” J. Am. Chem. Soc. 141, 48, 19130-19137 (2019). DOI:10.1021/jacs.9b10147
  6. S. M. L. Teicher, I. K. Svenningsson, L. M. Schoop, and R. Seshadri, “Weyl nodes and magnetostructural instability in antiperovskite Mn3ZnC,” APL Materials 7, 121104 (2019). DOI:10.1063/1.5129689
  7. J. R. Chamorro, A. Topp, Y. Fang, M. J. Winiarski, C. R. Ast, M. Krivenkov, A. Varykhalov, B. J. Ramshaw, L. M. Schoop, and T. M. McQueen, “Dirac fermions and possible weak antilocalization in LaCuSb2, “APL Materials, 7, 121108 (2019). DOI:10.1063/1.5124685


  1. L. M Schoop, F. Pielnhofer, and B.V Lotsch, “Chemical Principles of Topological Semimetals,” Chem. Mater., 30(10):3155–3176, 2018
  2. J. Zhang, Y.-H. Chan, C.-K. Chiu, M.G. Vergniory, L.M. Schoop, A.P Schnyder, “Topological band crossings in hexagonal materials,” Phys. Rev. M, 2:074201, (2018)
  3. C.P. Weber, L.M. Schoop,, S.P Parkin, R.C. Newby, A. Nateprov, B. Lotsch, B.M. Krishna Mariserla, J.M. Kim, K.M Dani, H.A Bechtel, E. Arushanov, M. Ali, “Directly photoexcited Dirac and Weyl fermions in ZrSiS and NbAs,” Appl. Phys. Lett., 113 (22):221906, (2018)
  4. M.G. Vergniory, L. Elcoro, F. Orlandi, B. Balke, Y.H. Chan, J. Nus, A.P. Schnyder, and L.M. Schoop, “On the possibility of magnetic Weyl fermions in non-symmorphic compound PtFeSb,”Eur. Phys. J. B, 91:213, (2018).


  • 2020: Soft chemical synthesis of HxCrS2: An antiferromagnetic material with alternating amorphous and crystalline layers (PDF)